

_	ESES.									
Reg.	No.	*****	 	 	 	 	 	 	10 1	

Third Semester B.Tech. Degree Examination, November 2013 (2008 Scheme)

08.302 : SOLID STATE DEVICES (TA)

Time: 3 Hours

TRIVANDOUS TRIVANDOUS

Answer all questions. Each question carries 4 marks.

- 1. Derive the continuity equation for holes and electrons in a semi conductor.
- With neat diagram explain the Fermi-Dirac distribution applied to semi conductors.
- 3. A GaAs sample is doped so that the electron-hole components of currents are equal in an applied electric field. Calculate the equilibrium electron-hole concentrations, the net doping and the sample resistivity at 300 K $\mu_{\rm p} = 8500 \, {\rm cm}^2 \, / \, {\rm Vs} \, \mu_{\rm p} = 400 \, {\rm cm}^2 \, / \, {\rm Vs} \, n_{\rm i} = 1.79 \times 10^6 {\rm cm}^{-3} \, .$
- 4. With neat diagram distinguish between direct and indirect band semiconductor.
- 5. Derive the junction capacitance of a linearly graded junction.
- 6. Explain with neat diagram Avalanche Breakdown.
- 7. An n channel Si JFET has Nd = 10^{16} cm⁻³ Na = 10^{19} cm⁻³ and a = 1 μ m. Determine the
 - a) built in voltage
 - b) pinch off voltage.
- 8. What is a punched through diode? What are its advantage?
- 9. Explain the C-V characteristics of ideal MOS system.
- Explain the principle of operation of JFET.

PART-B

Answer any two questions from each Module. Each question carries 10 marks.

Module - I

- 11. State and derive Einstein's relation.
- 12. Explain Hall effect. Explain the procedure to measure majority carrier concentration and mobility of a semi conductor specimen.
- 13. Intrinsic Ge sample at room temperature has resistivity of 50 Ω cm. The sample is doped to the extend of 6×10^{13} As atoms/cm³ and 10^{14} Boron atoms per cm³. Find the conduction current density if an electric field of 4V/cm is applied across the sample $\mu_n = 3800 \, \text{cm}^2$ / Vs $\mu_p = 1800 \, \text{cm}^2$ / Vs .

Module - II

- 14. Derive expressions for injection efficiency transport factor, α and β of a p-n-p transistor operating in the active region in terms of the doping and dimensions of the different regions of the transistor.
- 15. Define the figure of merit of a BJT. Derive the expression for the same.
- a) Explain the principle of operation of Schottky diode and derive the current equation.
 - b) An ideal Silicon abrupt p-n junction has $N_A=10^{16}$, $N_D=10^{14}$ Cm⁻³. $\tau_n=\tau_p=0.1\mu s$ A = 10^{-3} cm², $D_p=10$ cm²/s. $D_n=24$ cm²/s. Determine the dynamic forward resistance of the diode at 300 K with forward voltages of
 - a) 0.5 v
- b) 0.6 V.

Module - III

- 17. Explain the principle of operation of an SCR.
- 18. a) An n channel Si JFET has $N_A = 10^{19}$ cm⁻³ $N_D = 10^{15}$ cm⁻³ and $a = 4\,\mu m$. Determine at 300 K
 - a) pinch-off voltage
 - b) the gate bias required to make the thickness of the undepleted channel equal to 1 μ m with $V_{DS}=0$.
 - b) Define the threshold voltage of ideal MOS capacitor.
- Explain the structure and principle of operation of depletion mode MOSFET.
 Derive expression for drain current.